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Abstract The effective response of non-linear random resistor networks consisting of WO 
different types of resistor is studied numerically and compared with some simple approximations. 
One type of resistor is assumed to be ohmic. while the other is assumed to have a non-linear I-V 
response of the form i = x&'. The effective response is calculated by solving Kirchhoffs 
equations for the voltages at each node of the network. Numerical results, for B = 2 and B = 4, 
are compared to theoretical predictions of a recently derived Clausius-Mossotti approximation 
for such network. The ClausiusMossotti results are found to provide a good description of 
the results of the simulations in cases of low contrast between the two components or a small 
fraction of the non-linear component in the network I t  is also found that the range of validity 
of this non-linear Clausius-Mossotli approximation is larger than that of the classical Clausius- 
Mossotti approximation for linear two-component random resistor networks. An extension of 
BNggeman's effectivemedium approximation to this case is found to give somewhat beaer 
agwment with the numerical results. 

1. Introduction 

The non-linear properties of small particle composites have been extensively studied in 
recent years [I] .  The composites of interest art usually made of non-linear (metal or 
semiconductor) particles embedded ip a linear host. They are of particular interest because 
their non-lineanties may be strongly enhanced relative to bulk samples of the same materials 
[ I ]  and phenomena of intrinsic bistability may arise in  them under certain conditions 12, 31. 
These effects are the results of a possibly great enhancement of the electric field within the 
particles, which can be produced by an appropriate ratio of the host-to-particle conductivity 
and by a modification of the field inside a given particle by other neighbouring particles. 
The effective properties of such composites with particles of weak power-law non-linearity 
were theoreticaly treated by an effective medium type approximation [4, 51. A recently 
published numerical study [6] concluded that this approximation agrees with numerical 
results for random resistor networks (RRNS) with low contrast between the two components 
and can also describe the qualitative behaviour of high-contrast networks. The properties of 
composites with particles of arbitrary non-linearity can be calculated by a recently derived 
extension of the Clausius-Mossotti (CM) approximation [7]. 

In this paper we report on numerical studies of mixed linear-non-linear RRNs with 
strong power-law non-linearity. The results are compared to those predicted by the CM 
approximation. It is well known that, for linear dielectrics, the CM approach gives a good 
description of the effective properties of composites in cases of small contrast between the 
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two components or of small volume fraction of one of the components. The higher the 
contrast between the components, the smaller is the range, in terms of volume fractions, 
in which the approximation is good. We found that the non-linear CM approximation also 
provides a good description of the numerical results in these cases and that its range of 
usefulness, i n  terms of the volume fraction of the non-linear component, is even larger than 
that of the CM approximation for a linear composite with the same contrast between the 
components. We also propose a new type of approximation for systems of this kind, which 
is an extension of Bruggeman's symmetric effective-medium theory (EMT) [8]. It too is 
compared with the simulations and found to be better than the CM approximation for all the 
cases we studied. 

The remainder of this paper is organized as follows. In section 2 we briefly describe the 
CM approximation for a linear host with non-linear inclusions and compare its predictions 
with results of simulations of an RRN model. In section 3 we present our extension of EMT 
for such systems, and compare it  with the same numerical results. Our conclusions are 
briefly summarized in section 4. 

2. Clausius-Mossotti approximation and n u m e r i a l  simulations 

Consider a two-dimensional square lattice with fraction p of non-linear conductors and 
fraction 1 - p of linear conductors. The linear conductors have an I-V response of the form 
i = S O U ,  where go is the constant linear conductance. The I-V response of the non-linear 
conductors is i = g (U) U, where g (U) is the voltage-dependent non-linear conductance and 
U is the voltage across the conductor. The effective response fie (U=) of the random network 
is defined such that the network is equivalent to a full uniform network made of conductors 
that have this response. It can be calculated using a generalization of the CM approximation 
[7]. The CM (also known as the Maxwell-Gamett) approximation is one of the most widely 
used methods for calculating the bulk properties of linear composites [9]. It involves an 
exact calculation of the field induced in the uniform host by a single spherical or ellipsoidal 
inclusion and an approximate treatment of the interaction between the effects of different 
inclusions, which results in a uniform field inside all the inclusions. The generalization 
of this approximation to materials composed of a linear host and inclusions of arbitrary 
non-linearity is based on the well known observation [IO] that the field inside an isolated 
inclusion of the above-mentioned shapes is uniform even when the inclusion is a non-linear 
material, irrespective of the form of the non-linearity. For a composite with many non-linear 
inclusions we can thus solve the electrostatic problem for the Lorentz local field and use 
that in order to find the uniform field inside the inclusions. In the discrete case of an RRN 
the problem can be similarly solved and the voltage U in each of the non-linear conductors 
is found to be given by [7] 
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where z is the coordination number of the network and U, is the average voltage. The 
effective conductance function of the network is found by a simultaneous solution of this 
relation and the equation 

This conductance is voltage dependent. Its functional form depends on the magnitude of 
the applied or average voltage U, and is in general different from that of the non-linear 
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elements of the network [7]. In the linear case g (U) is constant and equation (2) gives the 
well known linear CM result. 

This result can be applied to any type of functional dependence g (U). In this study 
the non-linear conductors are assumed to be strongly non-linear with g (U) = glup, where 
gl  and j3 z - 1  are constants. (If j3 5 -1  the uniqueness of the solution of Kirchhoffs 
equations cannot be guaranteed [ 1 I].) Two-dimensional square networks (z = 4) possess a 
special symmetry called duality I121. The duality transformation consists of replacing each 
conductor g by a perpendicular conductor gd = l/g and adjusting the boundary conditions so 
that the voltage on every new conductor is equal to the current flowing through the original 
one. It is clear that the network (named the dual network) satisfies Kirchhoffs equations. Its 
effective conductivity is given by Red (U&) = I / &  (ue). The CM approximation presented 
above preserves this invariance. ged (ued) can be calculated by equation (2) where go is 
replaced by 1/80 and g (U) by I/g (U). The voltage U& = g, (U,) U, is given by equation (1) 
where U, is replaced by Ved. go by I/go and U by ud = g (U) U. This will give the same 
result as ged (ued) = l/g, (U,). In OUT case of power low non-linearity the local constitutive 
relation in the dual network is gd (ud) = ( ~ / g f + ’ ) u - f i / ( f i + l ) .  Thus, it  is possible to relate 
networks of two different non-linearity exponents j3 and -j3/(p + I). 

Simulations were carried out for B = 0,2 and 4 on 10 x 10 square lattices with boundary 
conditions of zero voltage on one edge and a constant finite voltage on the opposite edge. 
At the two perpendicular edges a zero-current boundary condition was applied at all nodes. 
Both go and g, were kept finite and calculations were performed for various values of p 
and applied external voltage. Kirchhoffs equations for the voltages at each node were 
solved self-consistently using an iterative relaxation algorithm and the value of the effective 
conductance was extracted from the calculated total dissipation in the network. The final 
result for each calculation is an average over 100 different configurations. The error bars in 
all following graphs are of the order of the size of the data points or less. The values two 
and four for j3 were chosen because they represent the lowest-order non-linear corrections 
to the linear response of materials with spatial inversion symmetry. In these materials the 
non-linear effects begin with cubic terms in the expansion of the electric current. In general, 
this expansion contains all odd powers of the electric field. 

The algorithm used converges very slowly because of the non-linearity of the equations. 
It becomes slower as the contrast between the components increases. In this study the 
contrast between the components was kept finite so that we are always away from the 
percolation critical point. The systems were also kept small due to practical limitations of 
computing power. We did not try to investigate the percolation behaviour of such systems 
nor to extract critical exponents. Thus, finite size effects should have minor significance 
and our choice of 10 x 10 square lattices is sufficient to show the effective response of such 
systems. 

We computed the effective conductance of two-dimensional RRNS as described above. 
Typical results are shown in figure 1 for networks with go = gl = I ,  = 2 and various 
extemal electric fields. The extemal applied electric field EO is the average voltage U, 
divided by the size of the unit cell. In these cases the contrast between the components 
is completly determined by the value of Eo. In electric fields larger (smaller) than unity 
the non-linear component is a better (worse) conductor than the linear component. The 
results in cases where go # gl are similar and their important characteristics are the same. 
Only the value of the threshold field above (below) which the non-linear component is 
a better (worse) conductor than the linear component changes. Results for several fields 
larger than unity (which we shall call high fields) are shown in figure I(a). The numerical 
results appear as points and the CM predictions as full curves. As in networks with linear 
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Figure 1. The effective conductance of non-linear networks versus the fraction of uie non-linear 
component for go = .?I = 1. P = 2 and various applied fields EO. The tidl curves are the CM 
predictions for each case in I(o) and l(b) and for the highest-conuast (Eo = 0.045) case in I@). 
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Figure 1. Continued 

components, the CM approximation gives the correct results for the pure networks of either 
component. It is apparent that at high fields there is good agreement between the numerical 
results and the CM predictions only when the fraction of the non-linear component in smaller 
than - 0.4. In this region the linear component, which is the bad conductor, dominates 
the conductance. The contribution of the non-linear componerit (the good conductor) to 
the conductance becomes appreciable only at higher concentrations, where there are large 
deviations from the CM results. As expected these deviations become larger as the applied 
field and the contrast between the components increase. At high fields the CM predictions 
underesfimate the effective conductance of the network. Results For fields close to unity are 
shown in figure I(b). These networks have low contrast and their effective conductance i s  
very well described by the CM approximation at all concentrations. Results for fields much 
smaller than unity (low fields) are shown in figure I(c). Here the linear component is the 
good conductor, the non-linear component the bad one, and the. contrast between them is 
high. The CM predictions are close to the numerical results only for small concentrations 
of the non-linear component. The discrepancies between the two increase as the electric 
field decreases and the contrast between the components increases. At high concentrations 
the non-linear component is dominant. The range of good apeement is smaller than in 
high-field cases with similar contrast. In low-field cases the CM predictions overesrimate 
the effective conductance of the network. 

Similar results are obtained for networks in which the non-linear component has a non- 
linearity exponent ,9 that differs from two. The qualitative behaviour described above does 
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not depend on the precise value of p.  However, there are some interesting p-dependent 
differences in the details. Two examples of high-contrast networks with p = 0, 2 and 4 are 
shown in figures 2 and 3. The applied electric fields are chosen such that the conductance 
ratio of the homogeneous networks of the components is the same for all values of 6. 
In figure 2 the contrast i n  the non-linear cases is caused by high fields and the non-linear 
component is a better conductor. In all cases the bad conductor is dominant in a wide region 
of low goodsonductor concentration and the CM predictions are good only in that region. 
However it is clear that the deviation from these predictions decreases with increasing 
p.  This is even more apparent in figure 2(b), which is a magnification of the low good- 
conductor concentration regime. The discrepancy between the numerical results and the CM 
predictions is much larger, and becomes appreciable at lower concentrations in the linear 
case ( p  = 0)  as compared to the non-linear cases (p  = 2,4). Asp increases this discrepancy 
decreases. 

This behaviour can be explained by the following intuitive argument. The cases 
compared in figure 2 all have the same conductance ratio of the full uniform networks 
made of one of their components. In the linear case this ratio does not depend on electric 
field and thus exists also between single elements of the two components in the mixed 
networks. In the non-linear cases this contrast is field dependent. In the mixed networks 
the non-linear component is a better conductor and the electric field in it is thus smaller than 
the applied field. As a result the conductance ratio between a single non-linear element in 
the mixed network and a linear element is smaller than the ratio between the same non-linear 
element in the homogeneous non-linear network and the linear element. Because of this 
the effective contrast between the components in the mixed non-linear networks is smaller 
than in the mixed linear network and their effective conductances are better described by 
the CM approximation. This effect is stronger when p is larger since the local conductance 
ratio is given by the local field to the power 8. 

A similar behaviour is observed in high-contrast, low-field cases. An example is shown 
in figure 3. Here the CM predictions are almost identical for all values of p but the simulation 
results are appreciably different. The largest differences between predictions and numerical 
results are obtained in the linear case. These differences decrease as p increases. This is 
a result of the same effect as discussed above for high fields. At low fields the non-linear 
elements are poorer conductors than the linear elements and the electric field in them is thus 
larger. This again causes a smaller effective contrast in the mixed networks and a better 
agreement with CM predictions. 

The field dependence of the effective conductivity ue(Eo) is more complicated than the 
simple power-law form of the non-linear elements. The CM approximation predicts that at 
high fields ue&) is a concave function of the field with an asymptotic behaviour of the 
form 
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at very high fields. At low fields it is predicted to be a convex function with an asymptotic 
behaviour of the form d l  + dzE,” for very low fields. The values ci, cz. dl and d2 depend 
only on go, g, and p .  In figure 4 we compare these predictions with numerical results for 
p = 0.3 and p = 2.4. At high fields (figure 4n) these results are described by a concave 
function, but as expected they deviate from the predictions more and more as EO increases 
and the above asymptotic behaviour is not observed. For larger p these deviations are larger 
and the concave form disappears. At low fields (figure 4(b)) the numerical results are not 
described by a convex function and they disagree rather strongly with the CM predictions. 
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Flgure 2. The effective conductance versus the fraction of the non-linear component for p = 0. 
2 and 4 in high applied fields. For p = 2 Eu 2 9.1 and for p = 4 Eo 2 3.0, go = R I  = 1 and 
the conlrast in all cases is approximately 82 m 1 .  Poinu mark numerical resulrs and lines mark 
corresponding CM predictions. 2(b) is a magnification of the lowconcentration region of 2(a). 
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Feure 4. The effective conductance as a function of applied electric field in high fields (0) and 
low fields (b). 
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3. The effective medium approximation 

Another simple analytic approximation, which often gives very good results for the bulk 
effective conductivity of linear composite materials, is Bruggeman's symmetric EMT [SI. As 
in the case of the CM approximation. EMT is also based on an exact analytical calculation of 
the field distortion caused by a single spherical or ellipsoidal inclusion, but the host material 
is now the fictitious effective medium rather than one of the actual components. For this 
reason it is in general impossible to extend EMT to non-linear composites even when only 
one component is non-linear. the effective medium itself is now non-linear. Therefore the 
problem of a single inclusion becomes analytically intractable. 
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Here we nevertheless attempt to extend EMT to a mixture of a linear and a non-linear 
component by noting that, from the discussion of the CM approximation for such composites 
[7] it follows that in many cases, even though the non-linear component is strongly non- 
linear, the effective medium turns out to be only weakly non-linear. In particular, this is 
always the case if the non-linear component is present with a small volume fraction or 
if the contrast between the physical properties of the composites is low. Whenever the 
effective medium is only weakly non-linear, we can solve the problem of a single inclusion 
by ignoring the non-linearity of the fictitious uniform host medium. In this way we obtain 
the well known equation of Bruggeman [SI but with one of the component conductances 
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P"I 
Figure 6. Comparison of the CM approximation (full line) and EMT (dashed line) for 
a low-field case. In L e  inset @ = 4. 

g ( v )  depending on the local voltage drop U across such an isolated inclusion 

As in the case of the non-linear CM approximation, we have to supplement this equation 
by another equation, i.e. equation ( l ) ,  which gives the connection between the average 
voltage U, and the local voltage v across the non-linear conductor. To obtain this equation 
no assumption had to be made regarding the behaviour of the effective medium. The only 
assumption is, as in the linear case, that the field incident upon each of the non-linear 
conductors is uniform. These equations are solved simultaneously by standard numerical 
methods to give the explicit functional form of g,(u,). 

Typical results are shown in figures 5 and 6 in which we compare numerical results of 
two high-contrast cases to predictions of the CM approximation (equations 2 and I )  and EMT 
(equations 3 and 1). In figure 5 the field is high and the non-linear component is the good 
conductor. For both B = 2 and 4 the EMT predictions are slightly better than those of the CM 
approximation. They too are close to the numerical results only in the low-concentration 
range of the non-linear component and become better as B increases. In high-contrast, 
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Figure 7. The M approximation and EMT for a high-field ca(c. CM: linear case (full line). 
p = 2 (chain curve) and B F 4 (long dashed curve). E m  linear case (dashed line). B = 2 (long 
dash-shan dash) and B = 4 (dotted c m ) .  

low-field cases (figure 6) the EMT approach is much beder than the CM. It is~closer to the 
numerical results at both ends of the mixture range. In contrast to the CM predi%ions, those 
of the EMT become worse as ,3 increases and underestimate the effective conductance at 
low fields too. At low-field cases the numerical results lie between the EMT and the CM 
predictions. The larger is p, the closer they are to those of the CM approximation. 

It is interesting to see how the results of both approximations & affected by the non- 
linearity exponent 6. This is shown in figure 7 for a high-field case. It is seen that the EMT 
is most strongly affected by the replacement of a linear component by a non:linear one. 
For non-linear components with different ,3 both predictions are similar and decrease with 
increasing p. 

4. Conclusions 

We have determined the effective conductance propelties of mixed linear-non-linear RRNS 
with a strong power-law non-linear component by numerical simulations, and compared 
them with predictions of a previously proposed CM approximation and a new EMT 
approximation. It is shown that both approximations work well for cases of either low 
contrast between the components or low concentration of the non-linear component. For 
high-contrast cases it is shown that the CM approximation is better for such mixed networks 
than for linear networks with the same contrast, and that it improves as the power p of non- 
linearity of the non-linear component increases. The extension of Bruggeman's symmetric 
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EMT to these high contrast cases gives better results than the CM approach, even though 
it requires one further assumption conceming the non-linear behaviour of the effective 
medium. Thus it is shown that the EMT approximation, and to a somewhat lesser extent 
the CM approximation, can be dsed to calculate the electrical properties of non-linear small; 
particle composites, and to study ihe interesting and potentially useful non-linear phenomena 
that they produce. 

The analytic and numerical predictions presented above should bk compared to results of 
systematic experhenti on non-linear composites. At present, no such experimental studies 
have been reported and we hope a change’in this state of affairs will be encouraged by this 
paper. 
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